

A Mashup Architecture with Modeling and Simulation as

a Service

Sixuan Wang, Gabriel Wainer

Dept. of Systems and Computer Engineering, Carleton University
1125 Colonel By Dr. Ottawa, ON K1S5B6, CANADA

{swang, gwainer}@sce.carleton.ca

Abstract. Web services have been used in Modeling and Simulation
(M&S) for many years, but it is still hard to develop complex M&S ap-
plication by using heterogeneous data and varied services. Here we
show how to simplify the M&S application development by using ma-
shup technologies. We introduce a novel architecture, the Mashup Ar-
chitecture with Modeling and Simulation as a Service (MAMSaaS), in
order to deploy varied mashup components (e.g. Modeling and Simula-
tion as a Service, existing Web APIs, widgets and operators) and to
create M&S mashups for quick application development. We present
various tools built to support the architecture and a case study using the
mashup architecture.

Keywords: Modeling and Simulation as a Service · Cloud-based Simula-
tion · Web Data Integration and Mashups · Service Composition · Web API.

1 Introduction

Current Modeling and Simulation (M&S) systems have become more and more com-
plex, involving people different with M&S expertise, and varied M&S resources. In
order to simplify the development process of M&S systems, the M&S community has
used Web-based Simulation (WBS), Cloud-based Simulation (CBS) and Web Servic-
es (WS) technologies for around 20 years. WBS focused on running experiments
using the Web and later exposing M&S functions as web services [1]. This method
has been successful, and a large number of M&S WSs exist, including SOAP-based
WS [2] and RESTful WS [3]. CBS integrates WBS and Cloud Computing. It uses
Cloud Computing technologies to reduce costs and make easier to develop M&S
systems by exposing M&S resources as Modeling and Simulation as a Services
(MSaaS).

Nevertheless, the growth of M&S related WSs and open Web APIs makes it diffi-
cult to integrate them for complex applications. In particular, experts from different

domains cannot easily use existing M&S related resources for fast application devel-
opment. With this in mind, we aim to improve the development process of Web in-
formation systems for M&S that involve heterogeneous data and services. This
process should be such that one could reuse and integrate existing services and re-
sources related to M&S easily. People from different domains should be able to use
this process for sharing and combining their works quickly.

In order to do so, we present an architecture based on mashup technologies in the
Web 2.0 [4]. Mashups have been widely used in different domains; however, these
technologies have never been used to simplify the process of building M&S applica-
tions. Our objective is thus to develop M&S mashup applications to integrate differ-
ent M&S related WSs and resources. Our novel architecture, named Mashup Archi-
tecture with Modeling and Simulation as a Service (MAMSaaS), is a layered architec-
ture to deploy and identify M&S mashup components as well as link and execute
mashups for quick M&S application development.

MAMSaaS supports universal identification and development for mashup compo-
nent (named Boxes), which consist of varied M&S resources (MSaaSs, WebAPIs,
widgets and operators). In order to link and execute these components, MAMSaaS
supports component linking, development and search boxes, then build M&S envi-
ronments by wiring boxes, and then execute and visualize M&S at run-time.

Following, we will discuss the architecture and the tools we implemented: a Box
Development Tool and the MAMSaaS Mashup Platform. In addition, we also present
a prototype application integrating a Geographical Information System (GIS), a dis-
tributed M&S tool, and visualization services, built as a mashup application.

2 Background

M&S is being applied to almost every aspect of life, and developing of M&S applica-
tions has become more and more complex [6]. Varied resources are involved in the
development process, such as source systems, models, simulators, experimental
frameworks and experiments [7], as well as supported data (e.g. text, file, database)
and functions (e.g. data collection, result analysis, visualization) [8].

In order to simplify the application development process, web services have been
used in M&S for around 20 years. The basic idea is to expose M&S resources on the
Web as services. Web services ease the sharing of M&S resources: for instance, the
simulators are located remotely on a server, without worrying about the simulation
environment setup and software dependencies. Web services improve data accessi-
bility, interoperability and user experience [9].

In general, web services in M&S include Web-Based Simulation (WBS, which ex-
poses M&S functions as web services) and Cloud-Based Simulation (CBS, which
integrates WBS and Cloud Computing). In WBS, the functions of simulators and
their simulation environment are exposed as web services [1]. Users can submit their
requests (with specified message/parameters) to the simulator through web servers,
then simulation experiment runs remotely, and the results are returned to the user. In
recent years, numerous WSs in WBS have been developed, which can be categorized

into two main frameworks: SOAP-based (e.g. DDSOS [10], SOPM [11], and SASF
[12]) and RESTful-based (e.g. RISE [3], RESTful MMVE [13], and RESTful AIS
[14]). Numerous simulators (i.e., DEVS/SOA [2] and RISE [3]) implement the DEVS
M&S formalism [7] over a WS. RISE is the first and only RESTful distributed simu-
lator to support distributed simulation that supports DEVS and other model formal-
isms, languages and engines.

In CBS, both web services and Cloud computing are used in M&S. CBS is derived
from WBS, using Cloud Computing to manage varied M&S resources and build dif-
ferent simulation environments [15]. The use of web services in CBS has received the
name of Modeling and Simulation as a Service (MSaaS). MSaaS is a special form of
Software-as-a-Service (SaaS), as it hides the underlying infrastructure, platform and
software details from the users. The use of CBS and MSaaS is still in a preliminary
stage [16] and little effort has been done to integrate with other services [17], which
is an issue because there are many open Web APIs that could be useful for M&S
applications (e.g. weather forecast, GIS information, and big data for simulation in-
puts). They could improve user experience and make richer applications [18].

According to more than 11,000 APIs registered by ProgrammableWeb, REST WSs
take 73% while SOAP-based APIs take 27% [19]. WADL is a popular language to
describe REST web services, and many IT companies describe their REST APIs on
the HTML pages, such as Mashape (http://www.mashape.com/explore). SOAP WSs
are usually described in WSDL files. For example, WebServiceX
(http://www.webservicex.net/ws) has over 70 SOAP WSs using WSDLs. However,
there has been no research showing how to integrate these useful Web APIs in the
development process of M&S applications. Mashup technologies in Web 2.0 can be
used to solve this integration issue and simplify the M&S application development.

Mashups integrate different services from the web, using content from more than
one existing source to create a new value-adding application [4]. Mashups integrate
heterogeneous data, application logic (exposed as services in general), and UI com-
ponents (e.g. widgets) [5]. A large number of mashup techniques and tools have been
developed in both industrial development and academic research [5]. Many industrial
companies have developed their own commercial mashup tools, like IGoogle
(http://www.igoogleportal.com), and Yahoo! Pipes (http://www.pipes.yahoo.com).
They are based on the visual connection of components of heterogeneous data at the
enterprise level, offering Do-It-Yourself (DIY) guidance to meet user requirements
[20]. In addition, many academic efforts focus on mashups. Many of them use End-
User Programming (EUP), focusing on the composition and integration of web
sources for new purposes. Mashroom [21] uses nested relational models and provides
mashup operations like merge and filter over tables. In [22], the authors use native
language programming in mashup components, linking different logic together.

The fundamental element of current mashup technologies is the widget, a small
processing unit for performing single purpose task such as fetching, parsing, format-
ting and visualizing data [23]. For instances, DERI Pipes [24] enables users to build
widgets to process data from different sources (e.g. RDF, SPARQL, XML, HTML).
In [23], the authors proposed an open mashup platform with linked widgets created
freely by users that can be discovered and combined easily. WireCloud [25] is an

open source mashup platform provided by the FI-WARE project, which can imple-
ment widgets in JavaScript (JS) and HTML5 and build mashups by “wiring” widgets.

However, no one has ever tried to develop such widgets and mashup applications
in M&S (as well as integrating available WBS, CBS and Web APIs). Many of the
current mashup techniques and tools cannot work directly for M&S because: 1) they
are domain specific (i.e., they are useful only for single or limited problems in specif-
ic domains); 2) they have been discontinued; 3) they are limited (the widgets do not
support MSaaS and different kinds of Web APIs like SOAP and REST). Based on
this, we investigated a new mashup method focused on the process of developing
M&S.

3 The MAMSaaS Architecture

Based on the considerations in Section 2, we defined a novel mashup architecture to
simplify the process of developing M&S applications, named Mashup Architecture
with Modeling and Simulation as a Service (MAMSaaS). Shown in Fig. 1, MAM-
SaaS is a layered methodology and architecture to create and run M&S mashups.

Fig. 1. MAMSaaS Architecture

The proposed MAMSaaS architecture has four layers, as follows:

 Cloud: it is responsible for supporting Cloud infrastructure and deploying MSaaS.
The Cloud infrastructure includes Cloud compute units (for building and executing
simulation experiments) and Cloud storage units (for sharing M&S resources). In
addition, this layer is also responsible for deploying user-provided M&S resources
as MSaaS in the Cloud by using the MSaaS middleware on-demand.

 Box: it is responsible for developing mashup components (termed Boxes). Boxes
can have different categories (e.g. MSaaS from the Cloud Layer, existing open
APIs, widgets, operators). Each box is identified by a uniform box signature, and
has its own function for handling input messages and has its own visual form.

 Wiring: it is responsible for connecting boxes into a mashup. Boxes can be linked
with each other by their inputs/outputs that are identified in their box signatures. A
same box can be reused and re-wired in different mashups for new purposes.

 Mashup Application: it is responsible to select and wire boxes in workspaces,
and run applications. They can add box, wires and visualize the results at runtime.

Here we will discuss the top three layers: Box, Wiring, and Mashup Application lay-
ers, and discuss how to develop boxes and build M&S mashups. For the details about
the Cloud layer, the reader can refer to [26], in which we introduced the CloudRISE
middleware, which implements the concept of MSaaS (exposing all kinds of M&S
resources as services). CloudRISE uses a resource-oriented design via RESTful WSs
in which M&S resources are identified through URIs in the Cloud.

4 M&S Mashup Methodology

Box, wiring, and M&S mashups make up the complete set of an M&S mashup appli-
cation. In this section, we will discuss details of these three concepts.

4.1 Box – developing Mashup components

Boxes represent mashup components used for M&S. They are mini applications for
M&S-related scenarios (e.g. fetching a model, reproducing an experiment, visualizing
results, etc). Boxes receive heterogeneous data from varied services. A Box modula-
rizes specific functions and sends data to others; they can be shared or published on
the Web. There are four basic types: MSaaS, WebAPI, Widget, and Operator Boxes.

 MSaaS Box: it uses MSaaS services from CloudRISE to handle input data, and
then outputs results. CloudRISE works as a repository interface to expose M&S
resources as MSaaS. There are six main types: simulations, supporting functions,
models, supporting data, semantic data and instances. The ones related to the M&S
mashup are simulations, functions, and models. Users can manage resources and
control the lifecycle of the execution of simulations and functions by using the
HTTP methods GET/PUT/POST/DELETE to corresponding URIs. MSaaS Boxes
simplify the execution of experiments by combining several MSaaS into one box.
For example, an MSaaS simulation box can create a new experiment configuration
file, create a new experiment using that file, start the simulation and check its sta-
tus; when it finishes, it sends the simulation results to the output.

 WebAPI Box: it calls existing open Web APIs. It exposes the function following a
WS principle (RESTful/SOAP-based). RESTful Web APIs are usually described
in WADLs or HTML pages, while SOAP-based Web API is described in WSDLs.

 Widget Box: it is a lightweight web application that shows the data on web brows-
ers. They provide a visual representation for particular data. They can be reused
for web development or other mashup platforms. For example,
http://www.100widgets.com provides different widgets, supporting varied type of
data, e.g. forms, diagrams, tables, maps, photos and videos.

 Operator Box: it takes input data from other boxes and it generates the output
based on a customized process. The reason why we need operators is to address
the inconsistencies between boxes (i.e. boxes with similar ports that cannot con-
nect directly). Operators can be viewed as a converter between boxes. It can be a
filter, aggregator, splitter, or adapter. For example, if one port of a box is full
name, and one port in another box is given name, an operator can be a splitter that
extracts given name from full name, so these boxes can be connected.

Though boxes have different types, they are managed in a similar way. Each box is
packaged in a separated archive file, so it can be developed, downloaded and installed
on different servers. Each box package has three parts, as follows:

 Box Signature: To manage the varied boxes, we provide a uniform structure,

 Box Signature (B) = < Bx, I, O> (Definition 1)

Bx = <Bn,Bt,Bd,,Bs,Ba,Bp,Bm> is the general information of the box,
I = {p} is a set of input ports of the box,
O = {p} is a set of output ports of the box,
p = < pn, pt, pd > includes port name, type, and description.

 The Box Signature identifies each box with its basic information (Bx), input
ports (I) and output ports (O). The basic information includes its name Bn, type Bt
(e.g. MSaaS, WebAPI, Widget, Operator), description Bd, subtype Bs (e.g. simula-
tion MSaaS, RESTful WebAPI), author Ba, path Bp (the URI of a related WS), and
method Bm (the method name of a related WS). A box can have multiple input and
output ports, which are used to connect the boxes in a mashup. Each input or out-
put port include a port name, type (the message type in the port) and description (a
text that describes the port). For instance, given a WebAPI RESTful WS to fore-
cast the weather, its name is WeatherForecast, type is WebAPI, description is re-
turn weather forecast information, subtype is SOAP, author is JohnDoe, path is
http://www.webservicex.net/weatherforcat, and method is GetWeather. This We-
bAPI Box has one input port (with CityName as its name, xsd:string as its type and
city name as its description), and one output port (with weather as its name,
xsd:string as its type and weather forecast in 5 days as its description).
 Box Signatures can be described in XML files that can be provided by users or
constructed automatically from existing sources.

 Box Function: Each box has a function to response the input events. Boxes are
event-driven. When an input event comes, it triggers a function in the Box; then, it
sends data through output ports. Different types of boxes have different functions.
For the MSaaS Box, it combines multiple MSaaSs related to a same experiment in-
to a single box. For example, for the box of executing a new simulation experi-
ment, box function will: 1) construct a new experiment.xml; 2) create a new expe-
riment; 3) start the simulation; 4) check the result; 5) get result and send it to the
output ports. For the WebAPI Box, the function executes as defined in the Web

API (e.g. SOAP WS, RESTful WS). For the Widget Box, the function tells how to
handle the input data for visualizing in web browsers. For the Operator Box, the
function is the action to be executed (e.g. splitting, combing, and data conversion).

 Box View: Each box can also have a view in web browsers. Boxes can have
HTML/CSS files for visualization purposes. For boxes of MSaaS and WebAPIs,
their views could be either their signatures or the execution status. For Widget
Boxes, they can reuse existing HTML/CSS files in existing widgets. Users can also
customize these files to change the view how the data will show.

4.2 Box Wiring – linking boxes

A key feature of the boxes is that they can be connected to each other, which is called
Box Wiring. It is for composing different boxes through inputs and outputs.

 Box Wiring (W) = <{B}, {Bx.I, By.O}> (Definition 2)

 B = {Bx, By…} is a set of boxes,
{Bx.I, By.O} is a set of connections between boxes

A Box Wiring is a combination of boxes and connections among them. Each Wir-

ing (W) contains a set of boxes {Bx, By…} and connections {Bx.I, By.O}. For instance,
Bx.I, By.O means the output port O of Box By can be linked to the input port I of Box
Bx. Boxes notify about their changes via events on their output ports; other boxes can
consume these events via input ports. By wiring boxes, users can reuse them in mul-
tiple M&S scenarios without understanding the internal details.

4.3 M&S Mashup – building mashup applications

The boxes and wiring mechanism can be used to build M&S mashups. They are used
to build a composite M&S application by selecting and wiring boxes. It is based on
data flow and event-based mechanism among the boxes using a visual representation.

 Mashup (M) = < {B}, {W}, U > (Definition 3)

B = {Bx, By…} is a set of boxes,
W is a set of Box Wirings,
U is a user workspace for this mashup.

An M&S Mashup consists of a set of Boxes (B), Box Wirings (W), and a User
Workspace (U). Users can have different workspaces. In any workspace, users select
boxes and wire boxes through their input/output ports. After that, the mashup applica-
tion is ready. Users can run and visualize it.

Fig. 2 shows an example of an M&S Mashup. It is made up of six boxes (B1 to
B6), which interoperate with each other by exchanging data. Consider we have
MSaaS Boxes B1 and B2, Web API Boxes B3 and B4, Operator Box B5, and Widget

Box B6. Users can build a mashup application by wiring these boxes as shown in the
right part of Fig. 2. At run-time, the data generated in B1 will pass to B3 and trigger
B3’s function, and then B3 will output its data to B2. Similar actions happen in other
boxes. Users can see the mashup as defined in each Box View of boxes on web
browsers.

Fig. 2. Box/Wiring/Mashup example

5 MAMSaaS Implementation

We have developed different tools supporting MAMSaaS and the M&S Mashup me-
thodology. Here we discuss the Box Development Tool (used to extract and develop
boxes) and the Mashup Platform (used to wire boxes and run M&S mashups).

5.1 Box Development Tool

The Box Development Tool is used to develop boxes rapidly. It can load and save
Box Signatures in XML for the different kinds of Boxes. It can also extract Box Sig-
natures from existing files (e.g. MSaaS Experiment Frameworks, WSDL for SOAP-
based WebAPI, and WADL for REST-based WebAPI). In addition, it can generate
the configuration XML file that is used in the box package. This tool can also suggest
users with similar existing boxes.

The Box Development Tool was developed in Java using SWT (Standard Widget
Toolkit), which is a graphical widget toolkit. The Box Development Tool follows the
MVC design pattern. Fig. 3 shows its class diagram, which consists of three groups:

 The Data classes manage the data contained in the BoxSignatures. BoxSignatures
keeps all the signatures in a list. Signature keeps the information of a box. Opera-
tion contains the information of each port. Each operation has one parameter or
ComplexParameter. Parameter ports have basic information
(name/type/description) and ComplexParameter uses complex data types (e.g. us-
er-defined XSD).

 The Logic classes are used to define the logic of the boxes. They use Signature as
a bridge. They can extract information from other files to construct a Signature,
and convert it to other files. SimulationFramewrokXMLLoader and FunctionFra-
meworkXMLLoader load Experimental Frameworks from CloudRISE, extracting
information from it and saving it as a Signature in Data. Similarly, WADLReader
and WSDLReader load and parse the description file of Web APIs. Signatu-
reXMLHandler loads and saves the box signature XML files. Signature
2ConfigurationXMLConverter converts a Signature into a box configuration file.

 The View classes are used to build User Interfaces (UI). It supports user-friendly
UI to control the process of generating Boxes. The default UI is MainShell. It has
two menus: BoxSignatureUI for extracting and loading a Signature, and BoxDeve-
lopmentUI for saving a Signature and developing box packages.

Fig. 3. Class Diagram of Box Development Tool

As discussed before, each box is packaged in an archive file. This file contains a
Box Signature, a Box Function and a Box View. In our tool, Boxes are developed
using current web technologies (XML, JS, and HTML/CSS). This archive file is an
extended version of the widget package used in WireCloud [25], which will be dis-
cussed in the next section. The Box Signature is a XML configuration file. The Box
Function is a JS file that defines the actions for input events, while the Box View
contains HTML/CSS files to show the data in web browsers. For each box, we gener-
ate the configuration XML file. For the JS and HTML/CSS files, it can suggest users
with similar boxes, in order to reuse them. In particular, the JS function triggers func-
tions for input events by reusing the WireCloud’s API MashupPlatform.wiring. regis-
terCallback (inputName, callback); and when the function finishes, it outputs mes-
sage by reusing the WireCloud’s API MashupPlat-
form.wiring.pushEvent(outputName , data). Inside the JS function, it can execute
SOAP or RESTful WS.

Fig. 4 shows an UI example of the Box Development Tool after extracting the Box
Signature from an Experimental Framework in the cloud. Users can select the exist-
ing MSaaS file, load it, and then the tool parses the file and extracts the information
needed for its Box Signature. Later, users can modify this signature, and save it in the
format used by the M&S Mashup Platform.

Fig. 4. Extracting Box Signature from MSaaS file.

5.2 M&S Mashup Platform

The M&S Mashup Platform has a wiring editor that allows users rapidly building
M&S mashups. Users choose a type of box, drag and drop appropriate boxes into a
workspace, and then connect the output of a box to the input of another one. After
that, the mashup is ready and users can visualize the mashup at run-time.

The M&S Mashup Platform is an extended version of WireCloud [25], an open
source mashup platform. It supports widgets uploading and wiring, user workspace
management, and mashup execution. However, WireCloud does not support different
type of Boxes (in particular the MSaaS Box and WebAPI Box). WireCloud is a gen-
eral-purpose mashup platform, but not for M&S mashups (which should manage
different boxes with different handling processes). The M&S mashup platform we
developed extended WireCloud to support boxes for M&S mashup, which are
MSaaS, WebAPIs, widgets, and operators. Fig. 5 shows its class diagram, it consists
of three groups of classes:

 The Data classes extend the Category in WireCloud to BoxCategory, in which we
added two new types, which are MSaaS and WebAPI. We reuse most features of
widget and operator provided by WireCloud. Each box has three elements: signa-
ture, view, and function.

 The Logic classes extend the uploading and searching logic of WireCloud to sup-
port all types of Boxes. In BoxUpload, we changed the package format as archive
file, and modified the uploading and parsing logic. In BoxSearch, we changed the
databases of resources and searching logic. We extended the BoxWiring mechan-
ism and MashupExecution mechanism in WireCloud to support all types of boxes.

 The UI classes change the UI of WireCloud. The overall UI has been modified in
M&S Mashup UI. For Box Management UI, we changed the box uploading and
searching pages. For Workspace UI, we modified functions with Add Box button to
add boxes into user workspace, Wire Box button that drags and drops boxes in the
wiring editor, My Box to select from available boxes. For Mashup UI, we reuse the
mashup executing engine of WireCloud for box execution.

Fig. 5. Class diagram of M&S Mashup Platform (powered by WireCloud)

6 Case Study: a Land Use Modeling application

In this section, we show how to use MAMSaaS and our tools to build and visualize
an M&S mashup application from scratch. The case study focuses on building a Land
Use M&S mashup using GIS and other related M&S resources. GIS allows manag-
ing, analyzing, and displaying geographically referenced information, and it has been
studied for several years in M&S. However, developing M&S applications using GIS
is still a complex process [27]. GIS M&S requires many M&S related resources in-
cluding experts from different domains.

Changes for Land Use have drawn much attention in urban planning, engineering,
urban economics, and related fields. Land use can also affect the development of
transportation, population, and land distribution. Our mashup application includes:

 Environmental modeling: we built a Cell-DEVS environmental model to simu-
late the land use scenarios.

 Data collection: we need a function for generating initial data files from GIS to be
used as inputs to the Cell-DEVS model.

 Cloud-based simulation: we execute simulation experiments in the Cloud.
 Results analysis: it is a function to analyze simulation results, e.g. parsing, con-

verting, statistical analysis.
 Visualize results: it is a widget in web browsers to visualize the simulation result

in a vivid way.
 WebAPIs: they are existing web APIs useful for the GIS M&S. For instances, to

better predict the landuse tread, web API to forecast weather for the studied GIS
area is needed; to know the zip code information, a web API to search zip code
based on geographic information is helpful.

Fig. 6. Boxes wiring for GIS M&S mashup.

The Box Development Tool can help users develop boxes for the above M&S re-
sources. The developed boxes for this case study are as follows:

 MSaaS Boxes use CloudRISE. They contain Landuse model simulation (a simula-
tion experiment for the landuse model), GIS_data_collection (a function experi-
ment for collecting data), and GIS_KML_analysis (a function experiment to parse
simulation results to KML file). For each MSaaS Box, its signature is extracted
from the corresponding configuration files; its function combines multiple MSaaS
in a same experiment framework; and its view shows its execution status.

 WebAPI Boxes call existing open Web APIs. They contain City_weather (a
SOAP WS to forecast weather) and GeoIP_to_address (a RESTful WS to get an
address from a GIS). For each WebAPI Box, its signature is extracted from the ex-
isting WS description file or HTML files; the function calls the Web API through
HTTP request/response; and the view shows its output message.

 Widget Boxes show input data in web browsers. They contain Input_box (allow-
ing users to input messages), Input_show (showing input messages), KML_viewer
(viewing KML files in Google Map), and Wikipedia (getting Wikipedia informa-

tion). For each Widget Box, its signature is provided by users; the function analyz-
es input data; and the view visualizes input data.

 Operator Boxes handle inconsistencies between boxes. They contain Zip_to_log
(extracting Log files from an archive), and Geo_spliter (splitting Geo information
into coordinates). For each Operator Box, its signature is provided by users; the
function converts the input data and outputs it; and there is no view for operators.

After the boxes are developed, user can upload them into the M&S Mashup Plat-
form. Now it is time to wire these boxes into a mashup. Fig. 6 shows the box-wiring
page in the M&S Mashup Platform. In the wiring editor, users can drag and drop
boxes from different types, wire the boxes with their input and output ports. There are
three user inputs: model (the land use model in CloudRISE); GIS Tiff (the user-
selected area in a GIS dataset) and Geo Info (the global geographical references of
GIS dataset). We can wire the output of GIS Tiff as input of GIS Data collection, to
send GIS Tiff and extract an initialization file for the Land Use Simulation. Similarly,
we can wire model and GIS data collection to Land Use Simulation to receive inputs
of the model and initial files. Then, it can run the simulation. After that, we can wire
the Land Use Simulation with the Operator Box get log file from zip to extract the log
file and then wire this to Results Parsing, so a KML file can be generated, which
wires to the Widget Box Google Map for visualizing purposes. In another path, the
Geo Info wires to Operator Box Split Geo Info to get the coordinates of the area under
study, then the coordinates link to the WebAPI Box get IP to Address to get zipcode
and city address. After that, the zipcode wires to WebAPI Box City weather for get-
ting the weather forecast (shown in the Widget Box ShowInput); and city address
wires to Widget Box Wikipedia to get wiki information.

Fig. 7. Executing the GIS M&S mashup application

After the boxes have been wired, a new M&S mashup application is ready. Users
can go back to the workspace and execute it. After setting three inputs (i.e. Model
URL; GIS Tiff URL; and Geo infor URL), the M&S mashup will run. The messages
follow the wired boxes flow, and each box runs its function when receiving input

events and shows the corresponding visualization view in the workspace. Fig. 7
shows its execution view in Google Chrome. We can see that the MSaaS Boxes of
data collection, model simulation, and results parsing have been executed successful-
ly, and a KML with simulation results was generated and shown in the Google Map
with a timeline control (in which user can choose time to predict the land use popula-
tion). In addition, this mashup also shows the information of city address, weather
forecast in following 5 days and Wikipedia with North Carolina. From this case
study, we can see that anyone with basic web development knowledge (like
HTML/CSS/JS) can easily develop boxes. For developing M&S mashup, no specific
knowledge is required. User can simply select boxes and wire them as mashup.

7 Conclusion

We presented a new method for building M&S mashups for fast application devel-
opment by integrating heterogeneous data and services. We introduced a novel archi-
tecture, named the Mashup Architecture with Modeling and Simulation as a Service
(MAMSaaS), a layered architecture to deploy and identify M&S mashup component
as well as link and execute mashups for quick M&S application development. M&S
Mashup components are called boxes, which consists of MSaaSs, Web APIs, widgets
and operators. Each box has its own structure, function and view. M&S Mashup is
created through box wiring mechanism. We developed tools for developing boxes,
wiring boxes and run mashups. We presented a prototype with GIS M&S mashup
application, which has shown that the proposed method using boxes and wiring can
create and run simulation mashup in an easy and rapid way. The future work includes
developing more M&S mashup applications using the proposed architecture and
tools. This is an ongoing project, in order to further test its simplicity for developing
M&S applications, we are going to let graduate students in our M&S course to devel-
op their own boxes and mashups using the proposed tools. Another work is to study
more on the operator boxes to handle semantic issues between boxes.

References

1. Byrne, J., Heavey, C., Byrne, P. J: A review of Web-based simulation and supporting
tools. Simulation modelling practice and theory, 18(3), 253-276 (2010)

2. Mittal, S., Risco-Martin, J. L: Netcentric System of Systems Engineering with DEVS Uni-
fied Process: A Book in System of Systems Engineering. CRC/Taylor Francis (2013)

3. Al-Zoubi, K., Wainer, G: RISE: A General Simulation Interoperability Middleware Con-
tainer Journal of Parallel and Distributed Computing, 73(5), 580–594 (2013)

4. Balasubramaniam, S., Lewis, G. A., Simanta, S., Smith, D. B: Situated software: concepts,
motivation, technology, and the future. IEEE Software, 25(6), 50-55 (2008)

5. Gebhardt, H., Gaedke, M., Daniel, F., Soi, S., Casati, F., Iglesias, C.A., Wilson, S: From
mashups to telco mashups: a survey. IEEE Internet Computing, (3), 70-76 (2012)

6. Papelis, Y., Madhavan, P. Human Behavior. M&S Fundamentals, 271 (2010)
7. Zeigler, B. P., Praehofer, H., Kim, T. G: Theory of modeling and simulation: integrating

discrete event and continuous complex dynamic systems. Academic press (2000)

8. Skoogh, A., Perera, T., Johansson, B: Input data management in simulation–Industrial
practices and future trends. Simulation Modelling Practice & Theory, 29, 181-192 (2012)

9. Fortmann-Roe, S: Insight Maker: A general-purpose tool for web-based modeling & simu-
lation. Simulation Modelling Practice and Theory, 47, 28-45 (2014)

10. Tsai, W. T.; Fan, C.; Chen, Y.; Paul, R: DDSOS: A dynamic distributed service-oriented
simulation framework1. In Proceedings of the 39th annual Symposium on Simulation.
Washington, DC (2006)

11. Brebner, P: Service-Oriented Performance Modeling the MULE Enterprise Service Bus
(ESB) Loan Broker Application, In Proceedings of 35th Euromicro conference on Soft-
ware Engineering and Advanced Applications. Patras, Greece (2009)

12. Smit, M.; Stroulia, E: Simulating Service-Oriented Systems: A Survey and the Services-
Aware Simulation Framework. 6(4), 443-456 (2013)

13. Lopes, C. V., Debeauvais, T., Valadares, A: Restful massively multi-user virtual environ-
ments: A feasibility study. In Games Innovation Conference (IGIC), 2012 IEEE Interna-
tional. Rochester, NY (2012)

14. Arroqui, M.;Mateos, C.; Machado, C.;Zunino, A: RESTful Web Services improve the ef-
ficiency of data transfer of a whole-farm simulator accessed by Android smartphones.
Computers and Electronics in Agriculture, 87, 14-18 (2012)

15. Cayirci, E: Modeling and Simulation as a Cloud Service: A Survey. In Proceedings of the
2013 Winter Simulation Conference. Savannah, GA (2013)

16. Garg. S.K., Versteeg, S., Buyya, R: SMICloud: A Framework for comparing and ranking
Cloud services. Fourth International Conference on Utility and Cloud Computing. Mel-
bourne, Australia (2011)

17. Taylor, S.J.E, Khan, A, Morse, K, Tolk, A, Yilmaz, L, Zander, J: Grand Challenges on the
Theory of Modeling and Simulation. In Proceedings of the Symposium on Theory of
Modeling and Simulation. San Diego, CA (2013)

18. Jung, W., Kim, S. I., Kim, H. S: Ontology modeling for REST Open APIs and web service
mash-up method. In 2013 International Conference on Information Networking (ICOIN).
Huket, Thailand (2013)

19. Siriwardena, P: Advanced API Security. SpringerApress (2014)
20. Lizcano, D., Soriano, J., Reyes, M., Hierro, J. J: A user-centric approach for developing

and deploying service front-ends in the future internet of services. International Journal of
Web and Grid Services, 5(2), 155-191 (2009)

21. Wang, G., Yang, S., Han, Y: Mashroom: end-user mashup programming using nested
tables. In Proceedings of the 18th World Wide Web Conference. Madrid, Spain (2009)

22. Aghaee, S., Pautasso, C: End-user programming for web mashups. In Current trends in
web engineering, 347-351. Springer (2012)

23. Trinh, T. D., Wetz, P., Do, B. L., Anjomshoaa, A., Kiesling, E., Tjoa, A. M: Open Linked
Widgets Mashup Platform. In 2014 ESWC. Grete, Greece (2014)

24. Le Phuoc, D., Polleres, A., Morbidoni, C., Hauswirth, M., Tummarello, G: Rapid semantic
web mashup development through semantic web pipes. In Proceedings of the 18th World
Wide Web Conference. Madrid, Spain (2009)

25. Zahariadis, T., Papadakis, A., Alvarez, F., Gonzalez, J., Lopez, F., Facca, F., Al-Hazmi,
Y: FIWARE Lab: Managing Resources and Services in a Cloud Federation Supporting Fu-
ture Internet Applications. In 2014 UCC. London, UK (2014)

26. Wang, S., Wainer, G: Semantic Selection for Model Composition using SAMSaaS. In
Proceedings of Symposium on Theory of Modeling & Simulation. Alexandria, VA (2015)

27. Wang, S., Wainer, G: Web-based simulation using Cell-DEVS modeling and GIS visuali-
zation. Modeling & Simulation-Based Systems Engineering Handbook, 3,425-467 (2014)

